Manure and antibiotic contamination

By Jessica G. Davis
Professor and Extension Soil Specialist
Colorado State University

Low levels of antibiotics have recently been detected in surface water bodies such as rivers and lakes, around the country. Is this going to become an environmental crisis for the American dairy industry? The answer will depend, in part, upon whether dairy antibiotic use contributes to this contamination. There are actions dairy producers can take to minimize this hazard. The purpose of this article is to inform producers about this area of concern and to provide some suggestions for how to avoid potential problems with antibiotic contamination of the environment.

At this point, the sources of the antibiotics detected in these studies have not been identified. They could have either human, urban sources and/or veterinary, agricultural sources. Could dairies be a source of antibiotics in surface water?

Sampling found residues
Colorado State University recently sampled seven dairy lagoons and seven dairy manure stockpiles and analyzed them for several antibiotic classes. The lagoon samples ranged from non-detectable levels to 17, 17, and 19 parts per billion for the tetracyclines, sulfonamides, and macrolides. The solid manure samples also ranged from non-detectable levels to 5,130, 46, and 5 parts per billion of tetracyclines, sulfonamides, and macrolides.

Although results demonstrate the presence of antibiotics in dairy manure and lagoons, these antibiotic levels are quite low, less than 50 parts per billion, with the exception of one high measurement of tetracyclines in solid manure.

Knowing that antibiotics have been found in water bodies and in dairy manure sources, the question remains: can antibiotics be transported from dairy manure and wastewater storage areas to water bodies?

We have begun transport studies to evaluate runoff and leaching of antibiotics, but at this point there are many unanswered questions. There are many potential sources including pharmaceutical production facilities, wastewater treatment plants, feed mills, seepage from wastewater lagoons, or runoff from livestock operations or manured fields.

In addition to identifying contamination sources, we need to know whether the antibiotic levels measured in water bodies are high enough to have negative environmental impacts. In general, most measured concentrations have been well below (10 times lower) the levels that have been shown to be toxic to standard testing organisms.

If dairies and other livestock operations are indeed a source of antibiotic contamination of water bodies, then it will be important to know what manure management decisions can be made to hasten the degradation of antibiotics and limit their potential negative impacts.

Following Best Management Practices (BMPs) for dairies or other livestock operations, what can be done to prevent further contamination?

If dairies and other livestock operations are indeed a source of antibiotic contamination of water bodies, then it will be important to know what manure management decisions can be made to hasten the degradation of antibiotics and limit their potential negative impacts.

Western Dairy News is a collaborative effort of Dairy Specialists from:

This is not a new issue; in 1989, the National Academy of Sciences concluded that the use of antibiotics in animal feeding operations was seriously undermining the ability of antibiotics to protect human health. The World Health Organization called for a ban on routine feeding of antibiotics to livestock in 1997.

Scientists are researching this area to determine whether antibiotic resistance develops in surface water bodies where antibiotic concentrations have been documented.

If dairies and other livestock operations are indeed a source of antibiotic contamination of water bodies, then it will be important to know what management decisions can be made to hasten the degradation of antibiotics and limit their potential negative impacts.

Scientists are currently evaluating treatments such as composting, lagoon aeration, and phytoremediation in order to be prepared to give producers solid recommendations about management options to limit the spread of antibiotics present in the environment.

Antibiotics that are commonly used in livestock production have been found in surface water bodies. What are the sources of contamination? Are the concentrations high enough to cause harm to humans or ecosystems? If the sources include dairies or other livestock operations, what can be done to prevent further contamination?

As scientists seek answers to these questions, there are things dairies can do in the meantime. Following Best Management Practices (BMPs) for manure nutrients will also reduce the potential for contamination of water bodies with antibiotics.

Ask yourself these questions to be sure you are following BMPs:

- Is all of the runoff from your dairy (except for (Continued on next page)
Beneﬁts of rumen ﬂuid after DA surgery

John H. Kirk, DVM, MPVM
Extension Veterinarian
School of Veterinary Medicine
University of California-Davis, Tulare, CA

Displaced abomasums in dairy cows result in increased treatment costs, delayed or decreased peak milk production and increased culling risk. There are a variety of methods utilized for the correction of a displaced abomasum, all with advantages and disadvantages. Each has advantages and disadvantages. However, the method of choice is often surgical correction, as it results in fewer relapses despite the cost. Once the abomasum is replaced to its normal position, the metabolic upset should also be corrected to ensure a rapid recovery. In addition to the commonly used medical treatments with ﬂuids, calcium solutions, and propylene glycol, it has been suggested that rumen transfaunation—other- wise known as the administration of oral rumen ﬂuid from one apparently well cow to the sick cow—may be of beneﬁt in hastening the recovery in milk production. A recent study in the Journal of the American Veterinary Medical Association investigated the eﬀect of giving rumen ﬂuid after surgical correction of LDAs. In the study, naturally occurring LDAs in 20 older cows (2+ lactations) were surgically corrected by omentopexy in the veterinary teaching hospital at UC Davis.

Cows received 10 litres of ﬂuid right after surgery and on the day after surgery, half of the cows got 10 litres of rumen ﬂuid given by stomach tube. The rumen ﬂuid had been collected from one of two donor cows that had rumen fistulae. The ﬂuid was collected from ﬁve locations within the rumen of the donor cow and given to the surgical cows within 20 minutes of collection. Control cows received 10 litres of lukewarm tap water instead of rumen ﬂuid. Cows in both groups ate more dry matter on days two through ﬁve, compared to day one after surgery. However, cows that received rumen ﬂuid had signiﬁcantly greater daily dry matter intake each day following surgery compared to the control cows that received tap water. Cumulative dry matter intake at day ﬁve was also greater for the rumen ﬂuid treated cows compared to controls. The rumen ﬂuid treated cows also produced more milk each day and cumulatively by day ﬁve compared to the control cows. The cumulative ﬁve-day total for the rumen ﬂuid treated cows was 59 pounds greater compared to the control cows. The beneﬁts of administration of rumen ﬂuid shortly after LDA surgery may be due to increased feed intake leading to improved milk production. There may also be beneﬁts from changes in rumen pH and rumen ﬂuid volatile fatty acids. The optimal amount of rumen ﬂuid to administer and the frequency of administration was not determined in this study. The take home message seems to be that giving rumen ﬂuid from apparently healthy cows to those recovering from LDA surgery will speed up recovery and improved their milk production.

Recent study in the Journal of the American Veterinary Medical Association investigated the eﬀect of giving rumen ﬂuid after surgical correction of LDAs. In the study, naturally occurring LDAs in 20 older cows (2+ lactations) were surgically corrected by omentopexy in the veterinary teaching hospital at UC Davis.

Cows received 10 litres of ﬂuid right after surgery and on the day after surgery, half of the cows got 10 litres of rumen ﬂuid given by stomach tube. The rumen ﬂuid had been collected from one of two donor cows that had rumen fistulae. The ﬂuid was collected from ﬁve locations within the rumen of the donor cow and given to the surgical cows within 20 minutes of collection. Control cows received 10 litres of lukewarm tap water instead of rumen ﬂuid. Cows in both groups ate more dry matter on days two through ﬁve, compared to day one after surgery. However, cows that received rumen ﬂuid had signiﬁcantly greater daily dry matter intake each day following surgery compared to the control cows that received tap water. Cumulative dry matter intake at day ﬁve was also greater for the rumen ﬂuid treated cows compared to controls. The rumen ﬂuid treated cows also produced more milk each day and cumulatively by day ﬁve compared to the control cows. The cumulative ﬁve-day total for the rumen ﬂuid treated cows was 59 pounds greater compared to the control cows. The beneﬁts of administration of rumen ﬂuid shortly after LDA surgery may be due to increased feed intake leading to improved milk production. There may also be beneﬁts from changes in rumen pH and rumen ﬂuid volatile fatty acids. The optimal amount of rumen ﬂuid to administer and the frequency of administration was not determined in this study. The take home message seems to be that giving rumen ﬂuid from apparently healthy cows to those recovering from LDA surgery will speed up recovery and improved their milk production.

Always be careful when inoculating livestock

By Helen Schledewitz
Department of Veterinary Medicine
Colorado State University

Medicating livestock is a common practice on dairies, farms and ranches. Accidental injection to you, a family member, or coworker can occur while performing this task. Most vaccinations and medications given to livestock are not potentially harmful, but some are toxic to humans. Other potential health eﬀects resulting from a needle stick include a localized in- fection caused by bacteria or other foreign material, or a reaction to a vaccine, active ingredient, or a carrier material. Everyone must be knowledgeable about the substances being used and exercise caution during the inoculation process. By using precautions and common sense the potential for accidental injec- tion can be minimized. The following precautions are recommended:

• Always read the enclosed label instructions, Material Safety Data Sheet (MSDS), or original label that comes with any medication BEFORE using it. If you do not have enclosed label in- structions or a MSDS, call the company and ask for a copy of the either the enclosed label instructions, MSDS or original label.

The enclosed label instructions, MSDS and/or the original label will have warning information to advise you on what precautions you need to take. Dairy managers should supply the information contained in the label or MSDS to their workers in the appro- priate language.

• Properly restrain livestock in a chute before vac- cinating or injecting medications.

• Do not use an automatic powered syringes when injecting “human toxic” medications.

• Do not carry “loaded” syringes in your pants or coat pockets.

• Do not leave “loaded” syringes on the seat of a vehicle.

• Do not leave “loaded” syringes on the seat of a vehicle.

Western Dairy News is published as a service to people interested in the health and welfare of the Western dairy industry. Archives of this publication may be found at:

http://animalscience-extension.tamu.edu/dairy/wdn.html

For further information contact:
Dr. Ragan Adams, Editor
IDM, CSU-VTH
300 W. Drake Road
Fort Collins, CO 80523
970-297-0371
truenator@lamar.colostate.edu

Material published in Western Dairy News is not subject to copyright. Permission is therefore granted to reproduce articles, although acknowledgement of the source is requested. Cooperative Extension programs are available to all without discrimination.

Always be careful when inoculating livestock

By Helen Schledewitz
Department of Veterinary Medicine
Colorado State University

Medicating livestock is a common practice on dairies, farms and ranches. Accidental injection to you, a family member, or coworker can occur while performing this task. Most vaccinations and medications given to livestock are not potentially harmful, but some are toxic to humans. Other potential health eﬀects resulting from a needle stick include a localized in- fection caused by bacteria or other foreign material, or a reaction to a vaccine, active ingredient, or a carrier material. Everyone must be knowledgeable about the substances being used and exercise caution during the inoculation process. By using precautions and common sense the potential for accidental injec- tion can be minimized. The following precautions are recommended:

• Always read the enclosed label instructions, Material Safety Data Sheet (MSDS), or original label that comes with any medication BEFORE using it. If you do not have enclosed label in- structions or a MSDS, call the company and ask for a copy of the either the enclosed label instructions, MSDS or original label.

The enclosed label instructions, MSDS and/or the original label will have warning information to advise you on what precautions you need to take. Dairy managers should supply the information contained in the label or MSDS to their workers in the appro- priate language.

• Properly restrain livestock in a chute before vac- cinating or injecting medications.

• Do not use an automatic powered syringes when injecting “human toxic” medications.

• Do not carry “loaded” syringes in your pants or coat pockets.

• Do not leave “loaded” syringes on the seat of a vehicle.

• Do not leave “loaded” syringes on the seat of a vehicle.

Western Dairy News is published as a service to people interested in the health and welfare of the Western dairy industry. Archives of this publication may be found at:

http://animalscience-extension.tamu.edu/dairy/wdn.html

For further information contact:
Dr. Ragan Adams, Editor
IDM, CSU-VTH
300 W. Drake Road
Fort Collins, CO 80523
970-297-0371
truenator@lamar.colostate.edu

Material published in Western Dairy News is not subject to copyright. Permission is therefore granted to reproduce articles, although acknowledgement of the source is requested. Cooperative Extension programs are available to all without discrimination.

Always be careful when inoculating livestock

By Helen Schledewitz
Department of Veterinary Medicine
Colorado State University

Medicating livestock is a common practice on dairies, farms and ranches. Accidental injection to you, a family member, or coworker can occur while performing this task. Most vaccinations and medications given to livestock are not potentially harmful, but some are toxic to humans. Other potential health eﬀects resulting from a needle stick include a localized in- fection caused by bacteria or other foreign material, or a reaction to a vaccine, active ingredient, or a carrier material. Everyone must be knowledgeable about the substances being used and exercise caution during the inoculation process. By using precautions and common sense the potential for accidental injec- tion can be minimized. The following precautions are recommended:

• Always read the enclosed label instructions, Material Safety Data Sheet (MSDS), or original label that comes with any medication BEFORE using it. If you do not have enclosed label in- structions or a MSDS, call the company and ask for a copy of the either the enclosed label instructions, MSDS or original label.

The enclosed label instructions, MSDS and/or the original label will have warning information to advise you on what precautions you need to take. Dairy managers should supply the information contained in the label or MSDS to their workers in the appro- priate language.

• Properly restrain livestock in a chute before vac- cinating or injecting medications.

• Do not use an automatic powered syringes when injecting “human toxic” medications.

• Do not carry “loaded” syringes in your pants or coat pockets.

• Do not leave “loaded” syringes on the seat of a vehicle.

• Do not leave “loaded” syringes on the seat of a vehicle.

Western Dairy News is published as a service to people interested in the health and welfare of the Western dairy industry. Archives of this publication may be found at:

http://animalscience-extension.tamu.edu/dairy/wdn.html

For further information contact:
Dr. Ragan Adams, Editor
IDM, CSU-VTH
300 W. Drake Road
Fort Collins, CO 80523
970-297-0371
truenator@lamar.colostate.edu

Material published in Western Dairy News is not subject to copyright. Permission is therefore granted to reproduce articles, although acknowledgement of the source is requested. Cooperative Extension programs are available to all without discrimination.