Connexin29 expression, immunocytochemistry and freeze-fracture replica immunogold labelling (FRIL) in sciatic nerve

Xinbo Li,1 B. D. Lynn,1 C. Olson,1 C. Meier,2 K. G. V. Davidson,3 T. Yasumura,3 J. E. Rash3 and J. I. Nagy1
1Department of Physiology, Faculty of Medicine, University of Manitoba, 730 William Avenue, Winnipeg, Manitoba, Canada R3E 3J7
2Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, Universitaetsstrasse 150, D-44780 Bochum, Germany
3Department of Anatomy and Neurobiology and Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO 80523, USA

Keywords: connexin29, connexin32, gap junctions, Schwann cells, sciatic nerve

Abstract

The recently discovered connexin29 (Cx29) was reported to be present in the central and peripheral nervous systems (CNS and PNS), and its mRNA was found in particular abundance in peripheral nerve. The expression and localization of Cx29 protein in sciatic nerve were investigated using an antibody against Cx29. The antibody recognized Cx29 in HeLa cells transfected with Cx29 cDNA, while nontransfected HeLa cells were devoid of Cx29. Immunoblotting of sciatic nerve homogenate revealed monomeric and possibly higher molecular weight forms of Cx29. These were distinguished from connexin32 (Cx32), which also is expressed in peripheral nerve. Double immunofluorescence labelling for Cx29 and Cx32 revealed only partial colocalization of the two connexins, with codistribution at intermittent, conical-shaped striations along nerve fibers. By freeze-fracture replica immunogold labelling (FRIL), Cx32 was found to be present in gap junctions in the outermost layers of myelin, whereas Cx29-immunogold labelling was found only in the innermost layer of myelin in close association with hexagonally arranged intramembrane particle (IMP) ‘rosettes’ and gap junction-like clusters of IMPs. Although both Cx32 and Cx29 were detected in myelin of normal mice, only Cx29 was present in Schwann cell membranes in Cx32 knockout mice. The results confirm that Cx29 is a second connexin expressed in Schwann cells of sciatic nerve. In addition, Cx29 is present in distinctive IMP arrays in the innermost layer of myelin, adjacent to internodal axonal plasma membranes, where this connexin may have previously unrecognized functions.

Introduction

Connexins (Cx) form intercellular communicating channels for cell-to-cell exchange of ions and metabolites (Goodenough et al., 1996; White & Bruzzone, 1996) and, in virtually all organs of the body, establish syncytial-like communities of gap junctionally coupled cells (Simon & Goodenough, 1998). The importance of gap junctional intercellular communication (GJIC) is supported by the lethality or physiological impairments caused by deletion of different connexin genes in mice, as well as by human diseases attributed to mutations in connexin genes (Spray & Dermietzel, 1995; Willecke et al., 2002). Diversity of GJIC is indicated by the existence of at least 20 genes coding for different, but homologous, connexin proteins; allowing for differential and regulated expression among diverse cell types. Complexity of GJIC is suggested by findings that cells frequently express two or more connexins within individual gap junction plaques (Severs, 1999; Rash et al., 2001). Moreover, channels formed by different connexins display a broad range of gating properties and permeabilities (Veenstra, 1996). Many of the known connexins are expressed in the CNS. Of these, neurons express Cx36 (Condorelli et al., 2000; Rash et al., 2000, 2001), and astrocytes express Cx26, Cx30 and Cx43 (Nagy & Rash, 2000; Nagy et al., 2001). Oligodendrocytes and Schwann cells previously were thought to express only Cx32 (Scherer et al., 1995; Li et al., 1997; Rash et al., 2001), but recent reports have described Cx26, Cx43 and Cx46 in peripheral nerve (Yoshimura et al., 1996; Chandross, 1998; Zhao & Spray, 1998; Mambetisaeva et al., 1999), none of which has yet been localized to ultrastructurally identified gap junctions in PNS myelin.

The study of Cx32 in the PNS has intensified following the discovery that mutations in the Cx32 gene contribute to the human peripheral neuropathy Charcot-Marie-Tooth disease (CMTX) (Bergoffen et al., 1993; Spray & Dermietzel, 1995; Bone et al., 1997). Cx32 in peripheral nerves has been localized at Schwann cell nodes of Ranvier and at Schmidt-Lanterman incisures, which are conical-shaped cytoplasmic inclusions of noncompacted myelin (Bergoffen et al., 1993; Scherer et al., 1995) that contain a variety of proteins including myelin-associated glycoprotein (MAG), which has been shown ultrastructurally to be concentrated at, and is an accepted marker for, incisures (Trapp et al., 1989; Arroyo & Scherer, 2000). Incisures may have specialized functions for metabolic and ionic communication (Gabriel & Allt, 1981) mediated by gap junctions between the specialized myelin membranes that enclose successive cytoplasmic expansions (Balice-Gordon et al., 1998). The
Connexin29 (Cx29) gene has recently been cloned (Altevogt et al., 2000; Sohl et al., 2001), and its mRNA was shown to be expressed in adult mouse CNS, as well as in sciatic nerve where it was suggested to be expressed in Schwann cells (Sohl et al., 2001). The presence of additional Schwann cell connexins and their functional relationship to Cx32 in peripheral nerve impacts on interpretations of the physiological basis of CMTX neuropathy. Consequently, an antibody against mouse Cx29 was used to begin analysis of the cellular and subcellular localization of Cx29 in the sciatic nerve.

Materials and methods

Antibodies and animals

An affinity-purified polyclonal antibody generated against a peptide corresponding to a sequence within the third cytoplasmic carboxy-terminus domain of Cx29 was obtained from Zymed Laboratories Inc. (South San Francisco, CA, USA; Cat. no. 34-4200). Several anti-Cx29 antibodies with previously described specificities were used including sequence-specific 7C7, as well as 73F generated against full-length Cx32 (Li et al., 1997). Antibodies 7C7 and 73F were kindly provided by E.L. Hertzberg (Albert Einstein College of Medicine, NY). Monoclonal antibody (Cat. No. MAB1567) against myelin-associated glycoprotein (MAG) was obtained from Chemicon International (Temecula, CA, USA). A total of 8 CD1 mice were obtained from the local Central Animal Care Services and utilized according to approved protocols by the Central Animal Care Committee, with minimization of stress to, and numbers of, animals used. Cx32 knockout mice were kindly provided to one of us (J.E.R.) by K. Willecke (Bonn, Germany) and bred according to standard protocols. Tissues from six Cx32 knockout and six corresponding wild-type C57BL/6 were used in this study.

RT-PCR, Cx29 expression vector and immunoblotting

Total RNA was isolated from adult mouse brain and HeLa cells, and the reverse transcriptase reaction using 500 ng Oligo(dT)15 Primer (Promega, Madison, WI, USA) was conducted as previously described (Lynn et al., 2001). Oligonucleotide primers, materials for amplifying mouse Cx29 coding sequence and transfection reagents were purchased from Gibco BRL Life Technologies (Burlington, ON, Canada). Primers chosen for PCR were designed according to the mouse Cx29 sequence (Sohl et al., 2001): sense primer, 5'-ATGTGCAGCCAGTCTGAGACA-3'; antisense primer, 5'-TCATAATGGCTTTCCTGCTGC-3'. PCR was carried out in 20 µL of solution containing 2 µL of 10 X PCR buffer (Gibco BRL), 0.8 µL of 50 mM MgCl2, 200 µM dNTP, 100 ng sense and antisense primers, 1 unit of Taq DNA polymerase and 1 µL of template cDNA. PCR products were separated by electrophoresis in a 1% agarose gel, stained with ethidium bromide and purified using a gel purification kit (Qiagen Inc, Mississauga, ON, Canada). pcDNA3 vector with CMV promoter was obtained from Invitrogen (Burlington, Ont, CA) and pcDNA3-T vector was prepared according to standard protocol. PCR products were ligated into pcDNA3-T vector using T4 DNA ligase (Promega). Recombinant plasmids were extracted, orientation was verified with BamHI digestion, and at least two recombinant plasmids were sequenced (ABI-320 DNA sequencer) using T7 universal primer for confirmation of sequence. HeLa cells (American Type Culture Collection, Rockville, MD, USA) were grown in Dulbecco’s Modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin, and maintained in an incubator at 37°C with 5% CO2. Cells were transiently transfected with plasmid using LipofectAMINE 2000 (Gibco BRL Life Technologies) reagent and taken for analysis 48 h post-transfection.

Mice were killed by decapitation, and samples of sciatic nerve and liver were homogenized in RIPA buffer (50 mM Tris-HCl, pH 8.0, 10 mM MgCl2, 150 mM NaCl, 1% Triton-X 100, 1 mM phenylmethylsulphonylfluoride (PMSF) and 2 µg/mL each of pepstatin A and leupeptin). HeLa cells were rinsed with cold 10 mM sodium phosphate buffer, pH 7.4, containing 0.9% saline (PBS) and harvested in RIPA buffer. Homogenates were sonicated, proteins were separated on 12.5% sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE) (30 µg per lane, samples not boiled prior to loading), transblotted to 0.2 µm polyvinyl difluoride (PVDF) and probed with antibodies as previously described (Li et al., 1997; Nagy et al., 2001) using anti-Cx29 (2 µg/mL) or anti-Cx32 antibody 73F (from mouse acities fluid; diluted 1:1000) or 7C7 (from unconcentrated culture supernatant; diluted 1:25). For analysis of specificity by peptide preadsorption, 1 µg of anti-Cx29 was preincubated for 1 h at room temperature with or without 100 µg of immunizing peptide and then incubated with blots or tissues.

Immunohistochemistry

Mice were deeply anaesthetized and perfused transcardially with fixative, and tissues were dissected and stored in cryoprotectant (Li et al., 1997). Cryostat sections (10 µm) collected on gelatinized glass slides were processed by immunofluorescence labelling for Cx29 and/or Cx32. Antibody dilutions and incubations were performed in buffer containing 1.5% NaCl, 50 mM Tris-HCl, pH 7.6, 0.3% Triton X-100 and 4% normal donkey serum (TBST). For single labelling, sections were incubated for 24 h at 4°C with either polyclonal anti-Cx29 (2 µg/mL) or with monoclonal mouse anti-Cx32 (73F diluted

© 2002 Federation of European Neuroscience Societies, European Journal of Neuroscience, 16, 795–806
Sections were washed for 1 h in TBST and then incubated for 1.5 h at room temperature with either Cy3-conjugated donkey anti-rabbit IgG (Jackson ImmunoResearch Laboratories, West Grove, PA, USA) diluted 1:200 for polyclonal Cx29, or Cy3-conjugated goat anti-mouse IgG (Jackson ImmunoResearch Laboratories) diluted 1:200 for monoclonal Cx32 antibodies. Cultures of HeLa cells were rinsed with cold PBS, fixed in ice-cold 0.1 M sodium phosphate buffer, pH 7.4, containing 4% formaldehyde, and processed with anti-Cx29 as above. Double immunofluorescence labelling was performed by simultaneous incubation of anti-Cx29 with either anti-Cx32 (73F, diluted 1:1000), anti-Cx32 (7C7, diluted 1:50) or anti-MAG (diluted to 2 μg/mL) followed by simultaneous incubation with Cy3-anti-rabbit IgG and fluorescein isothiocyanate (FITC)-conjugated horse anti-mouse IgG (Vector Laboratories) diluted 1:50. Fluorescence was examined on a Zeiss Axioskop2 MOT fluorescence microscope equipped with filters for visualization of FITC (excitation, 450–490 nm; emission 515–550 nm) and Cy3 (excitation, 541–551 nm; emission, 565–595 nm), and on an Olympus Fluoview IX70 confocal microscope. Images were captured using Zeiss AxioVision 3.0 or Fluoview software, assembled according to appropriate size and adjusted for contrast based on elimination of ‘empty’ pixels in either Photoshop version 3.0 or Corel Draw version 8.

Freeze-fracture replica immunogold labelling

Normal and Cx32 knockout mice were anaesthetized with ketamine/xylazine (90 mg/kg and 8 mg/kg) and fixed by transcardiac perfusion with 2% formaldehyde. Sections of sciatic nerve were frozen, freeze-fractured in a JEOL/RMC RFD 9010C freeze-fracture device, and prepared for FRIL as previously described (Rash & Yasumura, 1999; Rash et al., 2001). Replicas were single- or double labelled with rabbit anti-Cx29 antibodies (listed above) and monoclonal antibodies to Cx32 (Zymed Laboratories Inc, Chemicon International Inc, Temecula, CA, USA). Secondary immunogold-labelling was with various combinations of goat anti-mouse and goat anti-rabbit IgG bound to 5-nm (BBInternational, Cardiff, UK) and 6-nm, 12- and/or 18-nm gold (Jackson ImmunoResearch Laboratories). In some experiments, the use of two or more sizes classes of immunogold beads to label each connexin facilitated detection of gap junctions in low magnification searches based on higher visibility of the larger gold beads, yet retained the higher labelling efficiency of the smaller gold beads (Nagy et al., 2002). In addition, the simultaneous presence of two sizes of gold beads in each of two different structures (i.e. gap junctions vs. rosettes) and absence of the other sizes of gold beads in the same structure provides an internal verification of labelling specificity for each primary antibody. In these replicas, ‘signal-to-noise’ ratios (defined in Rash & Yasumura, 1999) were 500:1–5000:1.

Replicas were photographed as stereoscopic pairs in a JEOL 2000 EX-II TEM (included angle of 8E) at initial magnifications from 5 000 × to 100 000 ×. One sample labelled with 5- and 6-nm gold is

Fig. 2. (A) Western blots of Cx29 in HeLa cells transiently transfected with Cx29 cDNA. Lysates from two separate cultures of cells transfected with Cx29 expression vector show antibody detection of monomeric Cx29 (lanes 2 and 3) corresponding to that of Cx29 in homogenate of sciatic nerve (lane 1), while no detection is seen in control HeLa cells transfected with empty vector (lane 4). (B and C) Immunofluorescence of Cx29 in transfected HeLa cells showing robust immunolabelling in a small percentage of cells (B), and total absence of labelling in cells transfected with empty vector (C). Inset shows immunofluorescence within a pair of cells and around their periphery. Scale bar, 100 μm (B and C), 25 μm (inset).
presented in reverse stereo perspective (‘intaglio’), which clearly reveals that these small, low contrast gold beads are not coplanar with or part of the platinum replica film. As an aid to interpreting image details, stereoscopic images should be viewed using a 2× magnification, parallel optical axis (Stereopticon-type) viewer. Images were prepared with Photoshop 6.01, using minimal unsharp mask, levels and selected area dodging (brightness and contrast) functions to optimize image contrast and definition.

Results

Cx29 antibody characterization

In homogenates of sciatic nerve, affinity-purified anti-Cx29 antibody detected three major bands at approximately 32, 52 and 74 kDa (Fig. 1A, lane 1). The monomeric form of Cx29 migrated slightly slower than its predicted molecular weight. Bands at 52 and 74 kDa may represent nondissociated dimeric and trimeric forms of Cx29, but this remains to be established. Such aberrant migration profiles of monomeric and multimeric forms of other connexins have been reported (Green et al., 1988; Matesic et al., 1993; Rash et al., 2000). However, we cannot exclude that these band arise from cross-reactions of antibody with other proteins on immunoblots. For comparison, homogenates of liver probed with anti-Cx32 antibody contained monomeric Cx32 at 30 kDa, as well as higher molecular weight forms (Fig. 1A, lane 2). Cx29 antibody did not detect Cx32 when used to probe immunoblots of liver homogenate (Fig. 1A, lane 3). Based on the different migration profiles of Cx29 and Cx32, the anti-Cx29 and anti-Cx32 antibodies do not cross-react with Cx32 or Cx29, respectively. In a separate blot of sciatic nerve homogenate, the bands detected by anti-Cx29 (Fig. 1B, lane 1) were eliminated after preadsorption of antibody with immunizing peptide (Fig. 1B, lane 2).

In two separate experiments, Western blots of lysates from communication-deficient HeLa cells transiently transfected with Cx29 cDNA revealed detection of monomeric Cx29 (Fig. 2A, lanes 2 and 3) with a migration profile similar to that of Cx29 in homogenates of sciatic nerve (Fig. 2A, lane 1). Lysates from HeLa cells transfected with empty vector showed an absence of the monomeric Cx29 immunoreactive band (Fig. 2A, lane 4). Higher

© 2002 Federation of European Neuroscience Societies, European Journal of Neuroscience, 16, 795–806
molecular weight bands detected by Cx29 antibody in empty vector-treated cells obscured detection of Cx29 dimeric forms in Cx29 cDNA transfected cells. As a further control, RNA extracted from cells transfected with Cx29 cDNA and empty vector was taken for RT-PCR using Cx29 primers, and analysis by agarose gel electrophoresis indicated the presence of PCR products of expected size in

Fig. 4. Double immunofluorescence labelling of Cx29 with Cx32 and MAG in mouse sciatic nerve. (A and B) Same field of a section showing labelling with anti-Cx29 (A) and labelling for Cx32 with monoclonal antibody 73F (B). (C and D) Same field of a section showing labelling with anti-Cx29 (C) and labelling for Cx32 with monoclonal antibody 7C7. (E and F) Same field of a section showing labelling with anti-Cx29 (E) and with anti-MAG (F). Corresponding arrows in (A and B), (C and D) and (E and F) indicate double-labelled structures. Scale bars, 50 μm.
the former, but not in the latter (not shown). Immunofluorescence labelling with anti-Cx29 antibody in transfected HeLa cells is shown in Fig. 2B. A small percentage of cells in cultures transfected with Cx29 expression vector displayed bright immunofluorescence, while cultures treated with empty vector were devoid of labelling (Fig. 2C). Although some proportion of immunoreactivity appeared to be localized intracellularly, labelling was particularly evident around the periphery of cells (Fig. 2B, inset).

Immunofluorescence for Cx29 and Cx32 in sciatic nerve

Optimal immunofluorescence labelling for Cx29 was achieved by perfusion with 4% formaldehyde/picric acid fixative with either no postfix or 1.5 h postfix. A low magnification view of Cx29 immunofluorescence in a 1-mm segment of sciatic nerve is shown in Fig. 3A. Individual fibers exhibit cross striations of intermittent labelling. As shown in Fig. 3B and C, the striations often had a conical appearance. Also seen were narrow bands of labelling orientated perpendicular to the length of fibers. Examination of these by through focus indicated that most of these were also conical in shape, but their narrowed portions were only weakly labelled or were out of the plane of focus. More rarely encountered were abutments of concentrated immunofluorescence on each side of what were likely nodes of Ranvier (Fig. 3C). Laser scanning confocal microscopy indicated that conical immunolabelling associated with fibers was arranged as circular collars outside the margins of axons and that no labelling was seen within axons (Fig. 3D and E). Confocal microscopy also confirmed dense labelling at nodes of Ranvier (Fig. 3F), although it was difficult to discern the organization of Cx29 distribution at these structures.

Sections of sciatic nerve were processed for simultaneous labelling of Cx29 and Cx32 using two different anti-Cx32 antibodies. Double immunofluorescence indicated that most Cx29-immunoreactive cross striations along fibers (Fig. 4A) were also labelled for Cx32 with monoclonal anti-Cx32 antibody 73F (Fig. 4B). Similar results were obtained when sections were labelled for Cx29 (Fig. 4C) and simultaneously with monoclonal antibody 7C7 (Fig. 4D). Double-labelling for Cx29 (Fig. 4E) and MAG (Fig. 4F) also indicated a high degree of colocalization of these two proteins, indicating Cx29 localization at Schmidt-Lanterman incisures. In control procedures, omission of one or the other of the primary antibodies with inclusion
of both of the secondary antibodies produced no inappropriate labelling (i.e. Cy3 labelling with rabbit primary or FITC labelling with monoclonal primary), indicating lack of cross reactions of the secondary antibodies used.

Adjacent sections of nerve processed for immunohistochemistry by standard procedures using Cx29 antibody or antibody that had been preadsorbed with immunizing peptide are shown in Fig. 5. The robust labelling observed with anti-Cx29 (Fig. 5A) was eliminated after antibody preadsorption (Fig. 5B). In order to establish lack of immunohistochemical cross reaction of anti-Cx29 antibody with Cx32, sections of liver were processed for Cx29/Cx32 double-labelling concurrently with sciatic nerve as above. Anti-Cx32 antibodies gave a typical pattern of punctate labelling around hepatocytes (Fig. 5C), while anti-Cx29 antibody produced no labelling (Fig. 5D).

To establish lack of immunohistochemical detection of Cx29 by the anti-Cx32 antibodies utilized, sections of sciatic nerve from Cx32 knockout mice were processed for Cx29/Cx32 double-labelling. In the Cx32 knockout C57BL/6 strain of mice, labelling for Cx29 (Fig. 6A) was similar to that observed in both wild-type C57BL/6 mice (not shown) and CD1 mice (Fig. 3), but was not examined in detail for possible quantitative differences. A total absence of labelling was seen in sections of nerve from knockout mice processed with anti-Cx32 antibody 73F (Fig. 6B) or with 7C7 (not shown), which is in contrast to the normal pattern of immunolabelling seen with these antibodies in sections of sciatic nerve from wild-type strain C57BL/6 mice (Fig. 6C). These results indicate lack of anti-Cx32 antibody cross-reaction with Cx29. Also evident in the absence of Cx32 labelling in the KO mice (Fig. 6B) is the level of background seen in sciatic nerve with the antibodies employed as well as the pattern of background, which is distinctly different than the specific labelling.

FRIL localization of Cx29 and Cx32

Replicas of normal sciatic nerve that were single- and double-labelled for Cx32 and/or Cx29 revealed distinctive distributions for each connexin. Cx32 was found in conventional ‘plaque-type’ gap junctions within internodal myelin (Fig. 7). A detailed description of the distributions of Cx32 in gap junctions of normal vs. Cx32 KO mice is in preparation (C. Meier, R. Dermietzel, T. Yasumura and J. E. Rash, unpublished observations). As in homologous gap junctions in all other tissues examined by FRIL (e.g. Rash et al., 2001), Cx32 immunogold labelling was equally common beneath both E- and P-face gap junction plaques. In contrast, immunogold labelling for Cx32 could not be detected in Cx32 KO mice in gap junctions of liver or of sciatic nerve (not shown).

Cx29 immunogold labelling was abundant in the innermost layer of myelin in both normal mice (Fig. 8A and B) and in Cx32 KO mice (Figs 8C and 9), where it was detected only in association with unusual ‘rosettes’ of hexagonally arranged 8-nm P-face IMPs, clusters of hexagonally and randomly arranged 8-nm IMPs, and with singlet and doublet 8-nm IMPs. Unlike Cx32, Cx29 was not detected in gap junctions in the outer layers of myelin, in Schmidt-Lanterman incisures, or linking successive loops of paranodal myelin. However, in paranodal loops directly abutting the axon plasma membrane, immunogold labelling was also found on rosettes, interlocking rosettes and clusters of IMPs (Fig. 9C). Significantly, Cx29 immunogold labelling was not detected beneath myelin E-faces, nor did a search for labelling result in detection of rings or clusters of E-face pits. This apparent restriction of labelling to P-face IMPs and lack of labelling of myelin E-faces is noteworthy because E- and P-faces are produced in equal numbers (Challcroft & Bullivant, 1970; Steere, 1971), and E- and P-faces are equally well labelled in homologous gap junctions (e.g. astrocyte-to-astrocyte, or neuron-to-neuron) but are not labelled equally at heterologous gap junctions containing different connexins on each side of the junction (e.g. oligodendrocyte-to-astrocyte gap junctions) (Rash et al., 2001). Thus, the asymmetry of labelling of P-faces vs. E-faces in the innermost layer of myelin may provide an important clue regarding the nature of the coupling partner, if any, for Cx29.
Discussion

We used a newly generated antibody against Cx29 to demonstrate the expression and localization of Cx29 protein in peripheral nerve. Antibody specificity was established by several methods including Cx29 recognition in HeLa cells transfected with Cx29 expression vector. In view of the coexpression of Cx29 and Cx32 in nerve fibers, care was taken to establish that Cx29 antibody

Fig. 7. FRIL images of gap junctions labelled for Cx32 in normal adult mouse sciatic nerve. (A) Gap junction between outer tongue and second layer of myelin (M) (boxed area). A multistranded tight junction (TJ) also links the outer tongue E-face with the P-face of second myelin layer. (B) Magnification of the boxed gap junction in A. The E-face of the junction is visualized, with connexins of the underlying hemiplaque labelled for Cx32 by four 5-nm gold beads (arrowhead) and two 6-nm gold beads (arrow). In this reverse (‘intaglio’) stereoscopic image, gold beads appear on top of the inverted replica for easier visualization. (C) P-face of the second outermost layer of myelin showing a gap junction composed of seven connexon IMPs labelled for Cx32 by a single 18-nm gold bead. Cytoplasm within the outer tongue of myelin is indicated by an asterisk. Scale bars, 0.1 μm.
does not cross-react with Cx32 and that Cx32 antibody does not cross-react with Cx29. In addition, specificity of Cx32 detection is indicated by the presence of Cx32 immunofluorescence or immunogold labelling in gap junctions in mouse liver and myelin in normal mice, but not in liver or myelin of Cx32 KO mice. Finally, Cx29 but not Cx32 immunogold labelling of rosettes and clusters of 8-nm IMPs in the innermost layer of myelin in sciatic nerve of normal and Cx32 KO mice and lack of Cx29 labelling at sites in normal myelin where Cx32 was found further indicates that anti-Cx29 recognizes Cx29 but not Cx32.

Cx29 and Cx32 coexpression

Earlier observations raised the possibility that, in addition to their expression of Cx32, Schwann cells may contain additional connexins. Single channel analyses indicated that coupling of Schwann cell pairs is mediated by gap junction channels having several discrete conductances, suggesting the presence of more than one connexin (Chandross, 1998). Further, injection of low molecular weight dyes into the outer cytoplasmic collar of Schwann cells resulted in radial dye-transport along pathways of uncompacted myelin towards the innermost layers of myelin.
inner cytoplasmic collar, and this radial pathway was suggested to consist of gap junction channels composed of Cx32 at Schmidt-Lanterman incisures (Balice-Gordon et al., 1998). Based on findings that radial dye-transport in nerves of Cx32 knockout mice was largely unimpaired, Balice-Gordon et al. (1998) suggested that other Schwann cell connexins may be able to form channels at incisures in the absence of Cx32. Support for these observations may be provided by the finding of Cx29 as a second connexin in Schwann cells (Sohl et al., 2001), by demonstration of high Cx29 mRNA expression in peripheral nerve (Sohl et al., 2001), by the present LM results showing Cx29 colocalization with Cx32 and MAG in nerve, and by the continued expression of Cx29 in sciatic nerve of Cx32 KO mice.

However, interpretation of the degree to which Cx29 compensates for deletion of Cx32 requires caution. First, loss of Cx32 in mice and Cx32 mutations in humans do, after all, result in peripheral neuropathies. Second, radial dye-transport in nerves of Cx32-deficient mice may appear largely normal due to a partial contribution of Cx29 or another connexin, combined with possibly abnormally enhanced transport through structurally abnormal myelin (Suter, 1995; Anzini et al., 1997; Sahenk & Chen, 1998) including enlarged Schmidt-Lanterman incisures. Third, Cx29 was found by FRIL in IMP rosettes and clusters in the innermost layer of myelin in both normal and Cx32 KO mice, but did not occur at sites in the outermost layer of myelin, where Cx32 is found in normal mice. Fourth, while radial dye transport in nerves is inferred to be mediated by junctions at incisures and at paranodal loops, the presence of gap junctions at these locations remains to be established.

Ultrastructural localization

Cx32 has not been localized by immuno-ultrastructural methods at Schmidt-Lanterman incisures or at paranodal loops in CNS or PNS. Therefore, it is important to note that the occurrence of gap junctions at these structures has been inferred solely from its colocalization with other proteins known to be concentrated in incisures of peripheral nerve (Scherer, 1996). Considering our LM observations, we in turn infer Cx29 to be targeted to incisures and paranodal loops based on its colocalization with MAG and its partial codistribution with Cx32. However, while it is true that gap junctions have been observed between successive paranodal loops in mammalian CNS (Sandri, 1977; J. E. Rash, unpublished observations), and rare gap junctions have been reported to link the outer layers of myelin in normal avian PNS and to increase dramatically during Wallerian degeneration (Tetzlaff, 1982), to our knowledge there are no published examples of gap junctions between paranodal loops or between layers of myelin at Schmidt-Lanterman incisures in the PNS of any vertebrate. Likewise, there are no published reports documenting the presence of any connexin in any ultrastructurally defined gap junctions in PNS myelin. Although our LM labelling for Cx29 at presumptive incisures was robust, immunogold labelling for Cx29 did not reveal ultrastructurally defined gap junctions at incisures or directly linking successive paranodal loops. Thus, as noted by others (Scherer et al., 1995; Balice-Gordon et al., 1998), it remains to be determined if gap junctions link successive myelin layers at paranodes.

In any case, the present report is the first to document Cx29 in rosettes and gap junction-like IMP arrays in the innermost layer of peripheral myelin and at the tips of paranodal loops adjacent to axon plasma membrane. In normal mice, the rosettes and IMP clusters appear identical to distinctive rosettes of P-face IMPs previously described in the innermost layer of myelin (Miller & Pinto da Silva, 1977). Miller & Pinto da Silva (1977) also found unusual rosettes of E-face IMPs in the axonal plasma membrane, but despite extensive searches, they were unable to detect corresponding rosettes of E-face pits in inner myelin E-faces or P-face pits in the axonal membrane and could not determine if the axonal and myelin rosettes were structurally coupled. Likewise, we did not detect Cx29 on myelin E-faces, nor did we detect Cx29 labelling of the axonal rosettes. Thus, the structural relationship of myelin rosettes with other adjacent membranes and the protein composition of the coupling partner, if any, for Cx29 are yet to be determined. Possibilities include: (i) that Cx29 in the innermost layer of myelin may not couple to another connexin (i.e. that Cx29 is present as ‘hemichannels’ that appose the axon plasma membrane); (ii) that Cx29 may couple to some other as yet unidentified neuronal connexin in the axon plasma membrane; or (iii) that Cx29 links to a non-connexin protein in the axonal plasma membrane, most likely a protein in the axonal ‘rosettes’ of E-face IMPs.

Implications for peripheral neuropathy in CMTX

In addition to the presence of Cx32 in Schwann cells, Cx32 is expressed in many tissues. Indicative of the importance of Cx32 are functional and structural impairments in peripheral nerve as well as other tissues in Cx32 knockout mice (Anzini et al., 1997; Suter et al., 2000). Although CNS abnormalities possibly related to Cx32 expression in oligodendrocytes have been observed in patients with CMTX neuropathy (Bahr et al., 1999), the absence of impairments in other tissues expressing mutated forms of Cx32 remains unexplained. One possibility suggested was that other connexins compensate for loss of Cx32 in some tissues, whereas the apparent expression of only Cx29 in Schwann cells may render them selectively vulnerable to mutations in this connexin (Scherer, 1996). Although the present demonstration of Cx29 in Schwann cell myelin suggests this possibility less tenable, it remains to be determined whether Cx29 is able to compensate for absence of Cx32, and whether these two connexins subserve similar or different functions in peripheral nerve. Similar considerations apply regarding CMTX impairments in the CNS, as we have observed (Nagy et al., 2002) localization of Cx29 at gap junctions formed by oligodendrocytes in brain.

Acknowledgements

We thank B. McLean for technical assistance and V.A. Ionescu for aid in animal preparation. We also thank Dr K. Willecke (University of Bonn, Germany) for provision of Cx32 knockout mice and Dr E.L. Hertzberg (Albert

© 2002 Federation of European Neuroscience Societies, European Journal of Neuroscience, 16, 795–806
References

