There continues to be a lot of interest by dairy producers in the concept of producing methane from manure. Rising energy costs and increasing talk about control of emissions from dairies have made producers think about anaerobic digestion as a manure handling option. Both positive and negative comments about manure-to-methane technology abound. The fact is that it can be successful, but it must be done correctly and for the right reasons.

"It is simple to produce methane from manure"

While it’s true that manure decomposes naturally and part of this decomposition releases methane and carbon dioxide, this does not mean that it is easy to efficiently create methane from manure.

The solids content of manure is key to producing methane in commercial quantities. It is the solids in the manure that feed the “bugs” making methane. Generally, the higher the solids content of manure, the greater the volume of methane produced. The importance of solids content varies depending on the type of digester used (see the “All digesters are alike…” section later in this article).

Proper temperature is equally important. Anaerobic digestion of manure is usually done at 95 to 104 degrees (mesophilic temperature) or 125 to 140 degrees (thermophilic temperature). Once a system is operating, it is important to keep the temperature as constant as possible, because several degrees decrease in operating temperature can diminish methane production by as much as 25 percent. Some systems use both temperatures in sequence (phased temperature) to wring extra methane out of the carbon in manure.

Because solids content and temperature are such critical factors, an anaerobic digester should be monitored frequently. This doesn’t mean having a full-time operator, but the owner should record temperatures daily (or even more often) and monitor the amount of gas or electricity produced.

The amount of gas produced daily tells a lot about the health of the biology within the vessel. It is easy to upset the “bugs” doing the work. Avoid using excessive amounts of copper or zinc in footbaths. If using an ionophor to improve feed efficiency, gas production could be reduced. Don’t dump lots of waste milk into the collection system. And finally, avoid sand bedding because it will fill the digester with inorganic solids.

"It will solve a dairy’s manure headaches"

Be careful getting too excited about this technology solving the pressures for better environmental control of the dairy’s manure. Once methane has been generated from the manure, the effluent still contains nitrogen, phosphorus and potassium that must be field-applied responsibly. The major plant nutrients go nowhere during digestion, and can still pollute water if mishandled. A digester will reduce bacteria remaining in the manure and regulators use bacteria as an indicator of runoff or over-application. Don’t believe the folks who tell you that all the bacteria are gone. They are reduced 98 percent, but when you start with millions there are still a lot left, including some pathogens.

Since methane is produced and collected in a closed vessel, there is some odor control built into the system. The technology doesn’t do away with odors, however, because cow housing and long term effluent storage can still be sources of gases and particulates.

"It is a great way to make money"

One of the reasons that digesters built in
the 1970s were eventually abandoned was that wholesale energy rates, while high com-
pared to the 1960s, were not high enough to
pay for the investment in equipment and the
operating costs of producing electricity.

As energy costs rise, it can be more lucre-
tive to produce energy as long as wholesale
rates paid by utility companies to on-farm
generation facilities go up as well. Remember,
though, that wholesale rates paid to you will
only be about half the price of the power you
buy from the utility company. The advent of
“green power” options where ratepayers
choose to pay higher rates for electricity from
renewable sources may help the on-farm eco-
nomics of anaerobic digestion.

It takes an investment per cow of any-
where from $500 to $1,000 to build a digester and generator combination. Ongoing operat-
ing costs, like generator maintenance, take
another 8 to 10 cents per cow per day. Of the
initial investment, about half is in the portion
of the system needed for turning methane gas
into electricity that can be used on the dairy
and/or sold back to local utility companies.
This is also the portion of the system that
costs the most to operate.

About 80 percent of total operating costs
are associated with the electrical generation
facilities. A lower cost alternative for some
dairies is to burn the methane itself for water
and space heating. While this may only use
part of the gas collected, it may make a sys-
tem more affordable and practical to the busy
dairy operator.

“All digesters are alike and any of them
will work on your dairy”

Actually, there are four general types of
an aerobic digesters. Each is more efficient
with a particular type of manure and each is
has a particular level of operation sophistica-
tion. Here is a brief discussion of each:

The covered lagoon requires a tempera-
ture or warm climate since there is no supple-
mental heating of the manure. It will work
best with low solids content manure (4 to 8
percent) and manure must be held in the
pond for 40 to 60 days to allow breakdown of
carbon-bearing materials into methane gas.
As you might guess, it takes quite a large

cover to collect gas
from a pond that can
hold 60 days of a
dairy’s manure.

The complete
mix digester is a
closed vessel or tank
system where manure
is constantly fed in at
a pre-set rate and is
mixed into manure al-
ready in the vessel.
Manure is heated in
the vessel so this di-
gester can be used in
any climate. Complete
mix digesters will
handle manure with
medium solids content
(8 to 14 percent) and
have moderate to good gas production rates.

Thermophilic digesters are most often com-
plete mix types because higher temperatures
can be maintained more dependably when
cooler manure fed in is constantly mixed with
heated manure in the tank. Retention rates
are usually 20 to 28 days for these digesters.

Plug flow digesters are the cheapest to
build and the easiest to operate. Manure with
medium solids content of 11 to 13 percent is fed into
a long narrow tank at one end, while effluent
that has been digested comes out the other
end. These are also heated and covered, so gas
is collected above the manure.

Bio-reactive digesters are generally the
most expensive and the most complicated to
operate. They can handle manure with low
solids content (like flushed manure) and have
the shortest retention time to harvest the car-on out of manure. In general, they are de-
signed to create an ideal micro-environment
for methane-producing bacteria and to bring
the manure to the “bugs.” Often the micro-en-
vironment will be a film or slime layer within
the digester where the most active “bugs” re-
side and manure flows through, providing
carbon that can be made into methane. While
these digesters may not require a full-time
operator, they do require a lot of attention.
They are sort of the “race car” of digesters.

Summary:
The decision to build and operate a di-
gester will have many financial and manage-
ment impacts for years to follow, so the pro-
cess should not be taken lightly or done
quickly. Digesters can work fine, but they
must be designed for each specific dairy oper-
ation involved. Extensive research is crucial,
including visits to see digesters that are al-
ready in operation. Producers must also care-
fully examine the considerable time, cost, and
labor needs that will be required to operate