An Aerosol Sampler for Regional Lung Deposition

Kirsten Koehler, John Volckens
Colorado State University, Fort Collins, CO

1. Overview
A Lung Deposition Sampler was designed to mimic the regional deposition of aerosol in the human respiratory system.
- Estimating deposition is expected to provide a more physiologically-relevant estimation of risk.
- Substrates are foam and nylon screens that are amenable to chemical analysis.

2. Regional Lung Deposition
- Preliminary work used one collection substrate to represent the entire respiratory system (Koehler et al. 2009).
- Respiratory system is divided into three sections:
 - Head Airways
 - Tracheobronchial Region
 - Alveolar Region

3. Exposure ≠ Dose
- Filter-based sampling is state-of-the-art for aerosol exposure assessment.
- Typically collect all particles smaller than a given size (i.e., PM₁₀).
- A large fraction of inhaled PM is exhaled, leading to biased estimation of dose.
- Bias depends on aerosol size distribution.
- Lung dose is difficult to measure but lung deposition is possible.

4. Lung Deposition Sampler
- Previously, we developed a dimensionless model to determine substrate parameters that mimic the regional deposition fractions given by the International Commission on Radiological Protection (ICRP model, 1994).
- Head Airways region represented with two pieces of foam
- Tracheobronchial region represented with two pieces of foam
- Commercially available nylon net screens (Millipore Corp.) were used to mimic Alveolar Deposition.
- The sampler has been configured to operate at 1 m³ hr⁻¹ (16.7 L min⁻¹).

Foam 1: L= 4.6 cm, D= 0.8 cm, 60 PPI

2 Foams (Head Airways)
PM10 Inlet

30 cm

Foam 2: L= 0.6 cm, D= 4.0 cm, 60 PPI

2 Foams (Tracheobronchial)

Foam 3: L= 4.4 cm, D= 1.1 cm, 45 PPI

4 screens, D= 9 cm, 6 µm fibers

Foam 4: L= 5.0 cm, D= 1.8 cm, 45 PPI

Regional Deposition

Pressure drop through the engineered foam (total deposition sampler) and filter media as a function of aerosol mass loading.

Amenable to a variety of analyses.
- Substrates analyzed by:
 - Elemental analysis by inductively coupled plasma mass spectrometry (Dillner et al. 2007).
 - Polyfluorinated compound analysis by gas chromatography mass spectrometry (Langer et al. 2010).
 - PAH analysis by gas chromatography mass spectrometry (Sun et al. 2009).

More physiological representation of risk.

5. Advantages of a Deposition-based Sampler
- Low pressure drop.
 - Filters show an increase in pressure drop with particle loading, requiring advanced pumps to maintain the correct flow.
 - The engineered foam showed a constant pressure drop, even for very large loadings.
 - Even at 16.7 L min⁻¹, the pressure drop through the sampler is only 5.5 inches of water.

6. Limitations
- Gravimetric analysis is challenging.
 - 1. Large humidity artifact
 - 2. Static problems even after careful neutralization

- A 0.1% change in mass with changing relative humidity corresponds to 60-350 µg.
- Carefully controlled weighing environment may improve LOD.

7. Conclusions and Future Work
- A Lung Deposition Sampler has been designed to provide a more physiologically-relevant estimate of risk.
- Next we will test the sampler with 24 hour samples for ambient aerosol to compare collected fractions against a measured size distribution using a MOUDI.
- Ultimately, we will deploy the Lung Deposition Sampler in occupational setting to determine the difference in estimated heavy metal dose from the Lung Deposition Sampler and traditional filter-based sampling. We expect the Lung Deposition Sampler will better correlate with measured heavy metal body burden than filter-based methods.

Acknowledgements
This work was funded by grant R01OH009248 from the National Institute for Occupational Safety and Health and by Grant R01OH009229 from CDC NIOSH Mountain and Plains Education and Research Center

Contact Information:
Kirsten.Koehler@colostate.edu
John.Volckens@colostate.edu

References