A Personal Sampler to Estimate Particle Deposition in the Human Respiratory Tract

Kirsten Koehler, Phillip Clark, John Volckens
Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO

Introduction

- Measurement of aerosol deposition is a better surrogate for dose, risk assessment.

Advantages of Estimating Deposition vs. Exposure
- Not all inhaled particles deposit in the respiratory tract.
- Filter based samplers measure all particles (inhaled and exhaled).
- This results in error
 - Deposition vs. Inhalability
 - Deposition vs. PM2.5
- A sampler that mimics lung deposition may minimize this error.

Measurement Error: Exposure vs. Deposition

- *This results in error
 - Deposition vs. Inhalability
 - Deposition vs. PM2.5
- A sampler that mimics lung deposition may minimize this error.

Aerosol Deposition Model

Lung deposition sampler engineered from porous foam.

\[
D = 1 - \exp\left(-\frac{t}{\tau}\left(a(St)^b + c(Ng)^e + e(Pe)^f\right)\right)
\]

Clark et al. (2009)

Designing the Foam Sampler

- Inexpensive
- Lightweight
- Reliable

Using off-the-shelf parts the deposition sampler was built for <$100 and weighs about 0.3 kg (0.5 lb).

Battery Operated Pump Performance

- Tested variation in flow over a typical 8-hr exposure period.
- Linear decrease in flow rate with running time, due to the battery.
- The ~10% decrease in flow has a negligible effect on the deposition efficiency of the foam.

Real-Time Exposure Monitoring

- Can apply on a real-time basis using a condensation particle counter or nephelometer (here, Personal DataRam, pDR, Thermo Scientific, Inc.).
- Unmodified pDR gives the total aerosol concentration in mg/m³.
- pDR with the foam insert measures the exhaled portion.
- *Deposited Aerosol = Total Aerosol – Exhaled Aerosol.

Battery flow rate and battery voltage (after poloniometer) as a function of running time of the battery.

Known Limitations

- Gravimetric analysis influenced by humidity, electrostatics.

Conclusions

- A foam sampling system was developed that mimics the aerosol deposition in the human respiratory tract and is expected to provide a more physiologically relevant estimation of risk.
- This sampler presents a significant reduction in cost because inexpensive pumps can be used to control flow.
- Some difference in total and deposited aerosol concentration are noted for common exposures.

Acknowledgements

This work was funded by grant #OH009248 from the National Institute for Occupational Safety and Health and by Grant Number OH009229 from CDC NIOSH Mountain and Plains Education and Research Center.

Contact Information:
Kirsten.Koehler@colostate.edu John.Volckens@colostate.edu

References:

ICRP deposition fraction compared to ICRP (1994) total deposition and inhalable fraction. The red line represents modeled data; the symbols represent experimental data. Error bars represent one standard deviation.

Contact Information:
Kirsten.Koehler@colostate.edu John.Volckens@colostate.edu